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Abstract. The Large Vocabulary Instance Segmentation (LVIS) dataset
is a large-scale object detection task with thousands of categories, which
causes severe challenges due to the extremely long-tailed data distribu-
tions. The common methods (re-weighting or re-sampling) which might
damage the representation due to the data distribution is distorted. In
this work, we proposed a multi expert detection head approach to allevi-
ate the ordeals brought by imbalanced numbers between the foregrounds
without damaging the representation. The result of the proposed model
on the validation and testing-dev set achieves 34.1 and 33.7 mAP, re-
spectively, of the European Conference on Computer Vision challenge
(ECCV) 2020.

1 Introduction

Large Vocabulary Instance Segmentation (LVIS) [5] contains instance segmen-
tation masks for more than 1000 object categories with a challenging long tail
of rare objects. It divides the objects into rare, common, and frequent level. To
solve the long-tailed problem, [5] introduce a dynamic sampling factor that en-
ables rare data to automatically appear several times during training. This will
allow rare data to be more evenly distributed. However, the recent works [6, 11]
point out that the image-wise re-sampling methods damage the representation.
We propose the multi-expert detection head approach to learn the embedding
for each level (rare, common, and frequent). This can alleviate the rare level
to be divided into the background without damaging the representation. Also,
we use the synthetic instance augmentation to balance the instances count of
the dataset. After that, we use multi-scale image augmentation that enables the
model to capture the size of the object more accurately. It also avoids the model
that has difficulty capturing large or small objects. And lastly, following the [6, 7]
we use two-phase training to fine-tune the classifier, thus further improving our
model. Those methods improve the validation performance and testing results
which outperform the baseline.
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2 Approach

We propose two methods to solve the instance imbalance problem when training
the instance classification. One is multi-expert heads and another is synthetic
instance augmentation. Multi-expert heads let each head focus on their main
task and make the self-ensemble with the expert way. Synthetic instance aug-
mentation brings the balance between rare and frequency instances. With the
advantages of both, the multi-stage architectures gain a significant improvement
on the LVIS (v0.5/v1.0) dataset.

2.1 Multi-Expert Heads

Previous work. Given a multi-stage architecture model [1, 3] f , we have f :
x −→ {o1, ..., on}, where x means the input image and oj is the output of each
head. In instance segmentation task, oj = {clsj ,bboxj , segj} where clsj ,bboxj ,
and segj are instance classification, instance bounding box, and instance seg-
mentation, respectively.

Expert Training. In here, we are going to make each head become an expert
according to the instance frequency. In LVIS challenge, they split the instance
frequency into rare, common, and frequency. Hence, following the setting of
LVIS, our multi-stage architecture model becomes f : x −→ {or, oc, of} where
or, oc, and of are the outputs from the expert head with rare, common, and
frequency, respectively. Since the challenge in LVIS is the instance classification,
we design an expert loss function for clsr, clsc, and clsf .

In the conventional classification approach, we have clsj = z, z ∈ RK , where
z means the logit with K categories. To make the logit become the probability
of each category, we usually use the softmax activation function

pi =
ezi∑K
i=1 e

zi
. (1)

Next, we try to let each head attends on the instance frequency, we split the
categories into rare, common, and frequency sets with Sr, Sc, and Sf . Then, we
have expert softmax

Epi =
ezi∑

i∈SE
ezi

, (2)

where E ∈ {r, c, f} means the expert set. Empirically, increasing the intersection
over union (IoU) threshold will decrease the performance of rare classification
but improve the performance of frequency. Hence, we assign the rare for the first
head, common for the second head, and frequency for the third head.

There is a simple method to combine the general softmax and expert softmax
on each head for calculating the losses. We take the union between general and
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expert probability on the target category and then calculate the losses by cross-
entropy:

Lcls = −
K∑
i=1

Ici=ct log (pi)−
∑
i∈SE

Ici=ct log (Epi) (3)

= −
∑
i∈SE

Ici=ct log (pi × Epi) . (4)

Expert Inference. At the inference time, multi-stage architecture [1, 3] use
an average self-ensemble to make the final instance probability prediction. The
prediction p is

p =
1

n

n∑
j=1

K∑
k=1

pj,kek, (5)

where e is the unit vector with ek = 1, ei 6=k = 0, index j means the number of
head, and n usually is 3.

While training with the multi-expert heads approach, each head becomes an
expert according to the instance frequency. Hence, we replace the average self-
ensemble by expert self-ensemble. The instance probability prediction p becomes

p =
∑
k∈Sr

pr,kek +
∑
k∈Sc

pc,kek +
∑
k∈Sf

pf,kek (6)

=
∑

E∈{r,c,f}

∑
k∈SE

pE,kek. (7)

In colloquial terms, we combine the inference prediction from the first head,
the second head, and the third head only with the rare set, common set, and
frequency set, respectively.

2.2 Synthetic Instance Augmentation

Another approach is synthetic instance augmentation. The main idea is to cre-
ate some synthetic images with lots of rare instances and some common and
frequency instances. Note that there is no external data. All of the synthetic
annotations are created from the training dataset.

To create the synthetic images, first, we randomly pick up an image from the
training data which has no annotations. Second, randomly select some instances
with the proportion rare:common:frequency= a : b : c, where a > b > c, and
a, b, c ∈ N. Finally, randomly paste the instances on the selected image for each
of them is nonoverlapping. In our experiments, we have a, b, and c be 5, 3, and
1.

Creating some synthetic images with more rare instances can alleviate the
negative gradient problem for rare instances. In addition, it also avoids the over-
fitting of the classification on the rare instances rather than the repeat factor
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sampling [5]. Since repeat factor sampling just re-sample the same images with
the same annotations which means the background of the instances are still the
same.

3 Experiments Details

We perform experiments on the LVIS dataset [5], which contains 1203 categories
in release v1.0 and 1230 categories in release v0.5. The evaluation metric for
both v0.5 and v1.0 dataset is AP across IoU threshold from 0.5 to 0.95. In LVIS
v1.0, we train our model on 100k train images and valid it on 19k val set and
also reported our final results on 19k testing set.

Dataset Model EHLoss SD AP APr APc APf

LVIS v0.5 Cascade rcnn-X101 32x8d 28.24 18.31 27.25 33.44

LVIS v0.5 Cascade rcnn-X101 32x8d V 30.42 18.65 31.44 33.82

LVIS v0.5 Cascade rcnn-X101 32x8d V V 30.86 20.37 31.3 34.48

LVIS v1.0 Cascade rcnn-X101 32x8d 28.15 15.9 27.36 34.62

LVIS v1.0 Cascade rcnn-X101 32x8d V 29.1 18.02 28.12 34.6

LVIS v1.0 HTC-X101 32x8d 30.2 18.1 29.9 36.2

LVIS v1.0 HTC-X101 32x8d V 30.9 18.67 30.0 37.5

LVIS v1.0 HTC-X101 32x8d V V 31.2 20.97 30.2 36.8

Table 1. The results of ablation on expert head loss (EHLoss) and synthetic data (SD)
on LVIS val set. The metrics are mask AP and subscripts ’r’, ’c’, and ’f’ stands for rare,
common, and frequent category. Note that all model are trained using Repeat factor
sampling (RFS) [9] with t = 0.001 and the HTC models are training with SyncBN [10]
and Deformable Convolution [4] (DCN)

3.1 Multi-Expert Head Loss

In this experiment, we perform our method on LVIS v0.5 and v1.0 dataset.
Considering the computation cost, we only do the experiments on cascade rcnn
[2]. However, we later add the expert loss on the Hybrid Task Cascade (HTC)
[3] model to improve the performance in the challenge. The result is shown in
Table 1.

3.2 Synthetic Instance Augmentation

In this section, we apply our external synthetic instance augmentation on cascade
rcnn [1] and HTC [3] model. The backbone of all cascade rcnn and HTC model
are ResNeXt-X101-32x-8d and also equipped with FPN [8]. We randomly select
1000 images without annotations in LVISv1.0 dataset and random paste the
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Fig. 1. Examples of the synthetic instance augmentation.

instance segmentations to create synthetic images. We paste the instances with
the proportion rare: common: frequency = 1: 3: 5. The result is demonstrated
in Table 1. Some examples for synthetic data are shown in Figure 1.

Model AP APr APc APf

Challenge baseline 30.2 18.1 29.9 36.2

+Expert Head 30.9 18.67 30.0 37.5
+Synthetic Data 31.2 20.97 30.2 36.8
+Two-phase Training 33.1 25.2 32.8 36.9
+Multi-scale Testing 34.1 24.3 33.92 38.82

Table 2. Experiment results of different tricks on LVIS val set.

4 LVIS Challenge 2020 and Ablation Study

We use several methods to enhance the model for the challenge. The gain by
each term is shown in Table Table 2. With those enhancements, we achieve 34.1
and 33.7 Mask AP on val and test-dev set respectively. The comparison results
between LVIS [5] are demonstrated in Table 3.
Challenge Baseline. In this challenge, we use Hybrid Task Cascade (HTC) [3]
with ResNeXt101-64x-4d as backbone as our baseline model and use synchro-
nized batch normalization [10] (SyncBN) in backbone and heads. Additionally,
we apply deformable convolution [4] (DCN) in stage3, stage4 and stage5 of the
model. In the training phase, We use multi-scale training and the shorter edge
of images are resized to range from 400 to 1400, and the longer edge is set to
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Model eval. set AP APr APc APf

Official Baseline val 27.2 ± 0.17 19.6 ± 0.50 26.0 ± 0.33 31.9 ± 0.06

Ours† val 34.1 ± 0.14 24.3 ± 0.42 33.9 ± 0.28 38.8 ± 0.08

Official Baseline test-dev 26.8 19.0 25.2 32.0
Ours test-dev 33.7 23.9 33.5 38.4

† Due to computation cost, the results are average of the 3 runs.

Table 3. Final results on val and test set.

1400. We only apply horizontal flipping as our default data augmentation. Also,
we use class-specific mask and box prediction to achieves better performance.
In the testing phase, following the experiments in LVIS paper [5], we reduce the
score threshold from 0.05 to 0.0001, and we select top 300 bounding boxes as
the detection results. Other settings are kept the same as origin implementation
if not mentioned.
Multi-scale Testing We apply multi-scale testing on both bounding box and
segmentation results. The testing scales are set to (1333, 800), (1467,880) and
(1600,960) randomly.
Synthetic Data and Repeat factor sampling. Due to the rules of the chal-
lenge, we are not permitted to use external data. However, if we only use those
images without annotations in training data, the synthetic data we can make
will be quite insufficient comparing with the entire training set. Therefore, we
apply repeat factor sampling with t = 0.001 on training data and random sample
5000 images from the repeat sampling images set. We combine 5000 images from
RFS and 1000 images from our synthetic instance set to get the external data
for training.
Two-phase Training. To enhance our model, we apply the two-phase training
method. Following the balanced group softmax [7], in the first stage, we reduce
the effect from the repeat factor sampling which will damage the representation
learning. In the second stage, we apply balanced group softmax on our fully con-
nected layers of classifiers to learn the classification balancedly. This two-phase
training method improve the AP by 1.9. The improvement is consistent with the
experiment done in the paper, which means that our representation learning is
better than using only repeat factor sampling.

5 Conclusion

We propose a expert head and synthetic instance augmentation method for im-
proving the performance of current state-of-the-art model based on object de-
tection and instance segmentation over long-tail dataset. Both of them are able
to effectively improve the classification performance over the long-tail distribu-
tion data by enhancing the classification accuracy and reduce the destruction of
representation learning. Currently, our strategy for Expert head and synthetic
data augmentation is not optimized and we will investigate in future works.
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