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Abstract

Recent object detection and instance segmentation tasks
mainly focus on datasets with relatively small set of cate-
gories, e.g. Pascal VOC with 20 classes and COCO with 80
classes. The new large vocabulary dataset LVIS brings new
challenges to conventional methods. In this work we pro-
pose a equalization loss to solve the long tail of rare cate-
gories problem. Combined with exploiting the data from de-
tection datasets to alleviate the effect of missing-annotation
problem during the training, our method achieves 5.1% AP
gain and 11.4% AP gain of rare categories on LVIS bench-
mark without any bells and whistles compared to Mask R-
CNN baseline. Finally we achieve 28.9 mask AP on test set
of the LVIS Challenge 2019.

1. Introduction
Different from preceding instance segmentation datasets

such as COCO [7], the large vocabulary instance segmen-
tation dataset LVIS [2] poses new challenges. First, unbal-
anced data distribution of categories leads to serious per-
formance degradation of rare categories. Second, LVIS is
not exhaustively annotated with all categories therefore un-
labeled object instances will be treated as background and
will generate incorrect supervision signal. Recent state-of-
the-art methods show poor performance on LVIS [2], espe-
cially for the rare categories. In this work, we focus on
these two problems. For the long-tail problem, we pro-
pose a new loss function to improve the performance of
rare categories, which will be described in Section 2. For
the missing-annotation problem, we provide simple but ef-
fective strategies to utilize object detection data and anno-
tations, which will be described in Section 3.

(a) (b)

Figure 1: The effect of equalization loss on positive and
negative samples. (a) shows the number of positive and
negative samples for each category; (b) displays the ratio
of the number of negative samples to the number of positive
samples. Categories are sorted by their frequency.

2. Equalization Loss

Our work is based on the state-of-the-art instance seg-
mentation framework Mask R-CNN [3] with two modifica-
tions. First, to alleviate the competition between categories,
we replace softmax cross-entropy loss with sigmoid cross-
entropy loss for the box classification. Second, to reduce the
computation and memory cost, we use class-agnostic mask
prediction for the mask head instead of class-specific mask
prediction in origin paper [2].

During the box prediction stage of Mask R-CNN, for
proposal R assigned with category c, the sigmoid cross-
entropy loss of classification branch can be computed as:

Lcls = −
C∑

j=1

log(p∗j ), (1)

1



which

p∗j =

{
pj if j = c

1− pj otherwise,
(2)

where C is the total number of categories, pj is the pre-
dicted confidence for category j. This loss function requires
that for a given proposal, it should try to predict only one
category. However, in LVIS, one object can be annotated
with multiple categories, there is no strict boundary between
some categories. Meanwhile, since the annotations of rare
and common categories are much less than that of frequent
categories, predictions for rare and common categories are
suppressed for almost all the time using Equation 1 and 2.
In another word, a positive sample of one category can be
seen as a negative sample for other categories at the same
time. Those negative signals have a marked impact to cat-
egories with scarce annotations, i.e. rare and common. We
claim that less punishment to the rare the common objects
helps alleviate the two problems mentioned above, so we
introduce a novel equalization loss. It adds an additional
weight w ∈ RC to the origin sigmoid loss function. Given
a proposal R, we compute w as follows: if the proposal R
is negative, w is set to 1 for all index j; For a positive R, w
is set to 0 if j < λ and its category c is not in the union of
positive category set and negative category set. The equal-
ization loss is formulated as:

LEQL = −
C∑

j=1

wj log(p
∗
j ), (3)

which

wj =

{
0 if c > 0 and fj < λ and j /∈ SP ∪ SN

1 otherwise
(4)

where c is the category for proposal R, fj is the frequency
of category j, SP and SN are the positive and negative cate-
gory sets of the ground truth annotations of the image. Since
the categories are classified to frequent, common and rare in
LVIS, in our experiments, we empirically set λ to ignore all
rare and common categories. A more detailed parameter
search of λ may bring further improvements.

The effect of the proposed loss is shown in Figure 1. As
we can see, it alleviate the imbalance problem between pos-
itive and negative samples.

3. Exploiting Data of Object Detection
Since LVIS is not exhaustively annotated with all cate-

gories and data of rare categories are quite scarce, we utilize
additional public datasets and provide several strategies.

3.1. COCO Ignore

If a proposal is assigned to negative sample because of
missing-annotation, (miss-annotations problem comes from

Figure 2: Examples of miss-annotation. Red and green
boxes are LVIS annotated boxes and positive proposals, yel-
low and blue boxes are COCO annotated boxes and negative
proposals. Thoses blue negative proposals will give incor-
rect updating signals to the model.

unknown categories and ”not exhaustive” cases, not anno-
tations errors), the model will get an incorrect updating sig-
nal, which will influence the training and degrades the per-
formance. Since LVIS and COCO dataset share same set
of images, we utilize the bounding box annotation from
COCO dataset. During training, we calculate the overlaps
between negative proposals and COCO ground truth bound-
ing boxes. Figure 2 shows some examples of the missing-
annotation situation. For those IoU larger than 0.5, we de-
crease the weight to β. Since this strategy changes the total
loss scale, we double the loss weight of the box head and
set β to 0.5 rather than 0.

3.2. COCO Pre-training

Transfer learning is helpful for relatively small dataset,
and LVIS share the same image sets with COCO, so it’s in-
tuitive to train a detector in LVIS using COCO-pretrained
model instead of ImageNet-pretrained model. We pretrain
our model on COCO with instance segmentation annota-
tions and then fine-tune on LVIS.

3.3. OpenImage

OpenImage [5] is a large datasets with 600 object cate-
gories. LVIS shares 110 categories with OpenImage. We
add corresponding (about 20k images) images to LVIS train
set. Only bounding-box level annotations is used, so the
losses of mask branch are ignored for those images of Open-
Image dataset.

4. Experiments

We perform experiments on LVIS dataset, which con-
tains 1230 categories in release v0.5. The evaluation metric
is AP across IoU threshold from 0.5 to 0.95. We train our
model on 60k train images and test it on 5k val set. We
also reported our results on 20k test images.
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Model AP APr APc APf

ResNet50-Softmax [2] 21.0 3.2 21.3 27.7
ResNet50-Softmax* 20.8 5.6 21.5 25.6
ResNet50-Sigmoid 20.1 6.5 19.9 25.4

Table 1: Baseline model results on LVIS val v0.5.
ResNet50-Softmax* is our re-implementation. The metrics
are mask AP and subscripts ’r’, ’c’, and ’f’ stands for rare,
common, and frequent category.

Model AP APr APc APf

Baseline Sigmoid Loss 20.1 6.5 19.9 25.4
Equalization Loss 22.8 10.1 25.0 25.1

Table 2: Comparison of Equalization Loss and naive sig-
moid loss. All model are trained using ResNet-50 Mask
R-CNN.

EQL RS PR IG AP APr APc APf

20.1 6.5 19.9 25.4
4 21.3 12.2 21.5 24.7

4 22.8 10.1 25.0 25.1
4 4 23.3 15.3 24.8 24.5
4 4 23.9 11.7 26.0 26.1
4 4 23.5 14.8 25.0 25.2
4 4 4 25.2 17.9 26.8 26.2

Table 3: Experiment results of EQL(Equalization Loss),
RS(Resampling), PR(COCO Pretrain), IG(COCO Ignore)

4.1. Implementation Details

We implement standard Mask R-CNN equipped with
FPN [6] as our model. Training images are resized such as
its shorter edge is 800 pixels. No other augmentation is used
except horizontal flipping. RPN samples 256 anchors with
1:1 ratio of positive to negative. RoIAlign [3] is adopted
to extracted features of proposals. R-CNN head samples
512 proposals per image, with 1:3 ratio of positive to nega-
tive. Though class-specific mask prediction achieves better
performance, we use class-agnostic regime due to memory
and computation cost for mask branch. In testing, the score
threshold is reduced from 0.05 to 0.0, and top 300 bounding
boxes are remained as detection results. Other settings are
kept the same as origin implementation if not mentioned.

4.2. Ablation Study

In this section, we perform ablation studies among
Equalization Loss, COCO Ignore, COCO pre-training and
class-aware resampling. We implement Mask R-CNN with
ResNet-50 and replace the conventional softmax cross-
entropy loss with sigmoid cross entropy loss in box head
as our baseline. Comparisons of sigmoid loss and softmax

loss used in origin paper [2] are shown in Table 1.
Equalization Loss The experiments results are shown in
Table 2. Comparing with the sigmoid cross-entropy loss,
our method can lead to a significant improvement from
20.1% to 22.8%, especially on rare and common categories.
COCO Ignore We study the effectiveness COCO Ignore.
As shown in Table 3, COCO Ignore can significantly im-
prove the APr by 4.7% (10.1% to 14.8%), and lead an 0.7%
overall AP improvement.
COCO Pre-training We demonstrate the effectiveness of
COCO Pre-training in Table 3. It brings consistent perfor-
mance gain on three category groups.
Resampling We also implemented the class-aware data re-
sampling method which is proposed in [2]. We find that our
equalization loss is compatible with resampling, EQL can
further increase AP by 2% with resampling (from 21.3%
to 23.3%). Combining these two method can improve the
overall AP by 3.2%.

5. LVIS Challenge 2019

We add several enhancements on our model for the chal-
lenge, results are shown in Table 4. With those enhance-
ments, we achieve 36.4 and 28.9 Mask AP on val and
test set respectively which is demonstrated in Table 5.
Challenge Baseline We replace ResNet50 with ResNeXt-
101-64x-4d [9] and use synchronized batch normalization
[8] in backbone and heads. Also deformable convolution
is adopted [1] in stage3, stage4 and stage5 of the model.
We use multi-scale training and images are resized to range
from 400 to 1400, and the longer edge is set to 1400. All
these enhancements achieve a AP of 30.1%, shown in Ta-
ble 4.
Multi-scale Testing We apply multi-scale testing on both
bounding box and segmentation results. The testing scales
are set to 600, 800, 1000, 1200, 1400.
Expert Model We train two large model on COCO and
OpenImage respectively, and do testing on LVIS test set.
Shared categories detection results are used for ensemble.
Expert models of COCO and OpenImage improve the AP
by 0.2 and 0.2 respectively.
Re-scoring Ensemble Due to the class imbalance prob-
lem, the detection scores for rare and common categories
are much lower than that of frequent categories. We ob-
served that ensemble degrades recall of rare and common
categories dramatically because of their low scores com-
pared to frequent ones. To solve this, the predictions are
sorted by their scores and category frequency jointly. For
prediction dr of rare categories, and df of frequent cate-
gories, dr is prior to df if scorer + α > scoref , so do the
common vs the frequent. In our experiments, we set α to
0.1 for the rare and 0.05 for the common, respectively.
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Model AP APr APc APf

Challenge Baseline 30.1 19.3 31.8 32.3
+SE154 [4] 30.8 19.7 32.2 33.4
+OpenImage Data 31.4 21.5 33.1 33.3
+Multi-scale box testing 32.3 20.5 34.7 34.2
+RS Ensemble + Expert Model 35.1 24.8 37.5 36.3
+Multi-scale mask testing 36.4 25.5 38.6 38.1

Table 4: Experiment results of different tricks. RS Ensem-
ble stands for Rescoring Ensemble.

eval.set AP APr APc APf

[2] val 27.1 15.6 27.5 31.4
Ours val 36.4 25.5 38.6 38.1
[2] test 20.5 9.8 21.1 30.0
Ours test 28.9 17.7 30.8 36.7

Table 5: Final results on val and test.
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