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Abstract

Remarkable progress has been made in object instance
detection and segmentation in recent years. However, exist-
ing state-of-the-art methods are mostly evaluated with fairly
balanced and class-limited benchmarks, such as Microsoft
COCO dataset [7]. In this report, we investigate the perfor-
mance drop phenomenon of state-of-the-art two-stage in-
stance segmentation models when processing extreme long-
tail training data based on the LVIS [5] dataset, and find a
major cause is the inaccurate classification of object pro-
posals. Based on this observation, we propose to calibrate
the prediction of classification head to improve recognition
performance for the tail classes. Without much additional
cost and modification of the detection model architecture,
our calibration method improves the performance of the
baseline by a large margin on the tail classes. Codes will
be available.1.

1. Experimental Details
Dataset statistics Different from [5], we divide all the
1,230 categories of the LVIS v0.5 dataset into 4 sets, which
respectively contain < 10, 10-100, 100-1,000 and > 1,000
training object instances. We denote them as subset (0, 10),
subset [10, 100), subset [100, 1000) and subset [1000, -] for
convenience of expression. Please see Table 1 for detailed
statistics. Beyond the test set results, we evaluate model
performance based on such category split in this report, in
order to see the effect of training instance number and an-
alyze the long-tail object instance detection models. We
claim that the improvement on the tail bin, i.e. subset (0,
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Sets (0, 10) [10, 100) [100, 1000) [1000,−] total

Train 294 453 302 181 1230
Train-on-val 67 298 284 181 830

Table 1: Category division based on training instance num-
ber. Train-on-val means the subset of categories that appear
in the validation set.

10), of the validation set does not contribute much to the
overall AP as it contains only 67 classes, though the cate-
gory distribution of the test set is unknown.

Training and Evaluation Our implementation is based
on the mmdetection toolkit [4]. Unless otherwise stated,
the models are trained on LVIS-v0.5 training set and evalu-
ated on LVIS-v0.5 validation set for mask prediction tasks.
The external data used in the experiments are introduced
in Sec. 4. All the models are trained with SGD, 0.9 mo-
mentum and 8 images per minibatch. The training sched-
ule is 8th/11th/12th epoch updates with learning rates of
0.01/0.001/0.0001 respectively, unless otherwise stated.

2. Classification Calibration
We first investigate the performance degradation of the

baseline Mask-RCNN [6] on tail classes. Then, based
on our observations for the possible causes of this phe-
nomenon, we propose a classification calibration method
for improving the model performance over tail classes.

2.1. Missed Detection of Tail Classes

For simplicity of analysis, we train a baseline Mask R-
CNN with ResNet50-FPN backbone and class agnostic box
and mask heads. As shown in Table 2, the model performs
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Model AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

mrcnn-r50-thr 0.0 5.4 16.6 25.1 13.1
mrcnn-r50 0.0 13.3 21.4 27.0 18.0

Table 2: Performance of baseline Mask-RCNN with class
agnostic box and mask heads on validation set. mrcnn-r50-
thr means testing with 0.05 detection threshold and mrcnn-
r50 denotes testing with 0.0 threshold.

Dataset AP AR1k

LVIS 18.0 51.0
COCO 32.8 55.9

Table 3: Comparison of baseline models trained on COCO
and LVIS. Models are all evaluated with the 5k validation
set. AR1k denotes average recall at 1000 proposals. COCO
results are measured on minival set.

Model AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

mrcnn-r50 0.0 13.3 21.4 27.0 18.0
props-gt 39.7 45.1 31.4 29.3 36.6

Table 4: Test with ground truth labels of proposals.

poorly, especially on the tail sets (0,10] and (10, 100]. Even
when we lower the detection threshold to 0, which improves
5% mAP, the mAP for the subset (0, 10] is still 0. This re-
sult reveals that the Mask-RCNN model trained with normal
setting is heavily biased toward the many-shot classes (i.e.
those with more training instances).

We then calculate the proposal recall of the model and
compare it with that of the same model trained on COCO
dataset. As shown in Table 3, the same baseline model
trained on LVIS suffers a drop of 8.8% in the proposal re-
call compared with that on COCO, and notably, a 45.1%
drop in the overall AP. This indicates the degradation of
proposal classification accuracy is the major cause of final
performance drop on long-tail training data.

To verify our observation, for RPN generated propos-
als, we assign their ground truth class labels and evaluate
the AP, instead of using the predicted labels. As shown in
Table 4, AP on tail classes is increased by a large margin,
especially on the (0,10) and [10, 100) bins. This confirms
the observation that the low performance over tail classes
is mainly caused by the inability of the model to recog-
nize their correct categories from current generated pro-
posal candidates.

2.2. Classification Calibration with Retrained Head

To improve the performance of the second stage over tail
classes, our strategy is to retrain the classification head with
data obtained by class balanced sampling and combine pre-
dictions of the new classification head with the original one.
This approach, though simple, can effectively improve the
recognition accuracy on tail classes while maintaining good
performance on many-shot classes. We name it classifica-
tion calibration.

Concretely, we sample a fixed number of classes for each
step, and sample one image corresponding to each of the
sampled classes. In our current implementation, 16 classes
and 1 image per class are sampled. The sampled images
are fed to the trained model, and the obtained proposals
are matched with ground truth boxes using the same IOU
threshold as the original detection model training. Only
the proposals corresponding to the sampled classes are se-
lected, together with the ground truth boxes of these classes,
for training the new head; the other proposals are ignored.
During training, we keep the parameters in the backbone
network and RPN frozen.

As shown in Table 6, with the newly trained head as the
proposal classifier, AP on tail-class bins (0, 10) and [10,
100) is boosted by a large margin. However, due to insuf-
ficient training on many-shot classes, AP on [100, 1000)
and [1000,-] drops significantly. To enjoy the advantages
of both new and original heads, we have tried many differ-
ent ways to combine their predictions. Refer to Table 6 for
details. We find that simply concatenating the predictions
of the new head on tail classes ((0, 10) and [10, 100)) with
those of the original head on many-shot classes ([100, 1000)
and [1000,-]) yields the best results overall.

2.3. Generalization to Multi-stage Cascaded Models
and Large Backbones

To further improve the overall performance, we apply the
proposed calibration method to multi-stage cascaded mod-
els with more complex architectures. State-of-the-art cas-
caded model Hybrid Task Cascade [3] (HTC) is utilized
here. We find that HTC brings a large improvement over
vanilla Cascaded Mask-RCNN [2] on LVIS dataset. See
Table 5 for details.

All the three classification heads in the three stages of
the HTC framework are retrained with our proposed sam-
pling strategy, and we average the predictions of these three
new heads during inference following the original setting.
Then, the predictions on tail classes are concatenated with
the original classification results. Table 7 shows the results
of our calibration method applied to HTC with ResNeXt-
101-64d backbone. The scores of categories for (0, 10) bin
which are predicted by the new head are concatenated with
the scores of other categories predicted by the original head.

We think it is more reasonable to take into consideration
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Models COCO LVIS

box mask box mask

cascaded-mrcnn 45.4 39.1 28.6 25.9
htc 46.9 40.8 31.3 29.3

Table 5: Comparison of cascaded Mask-RCNN and Hybrid
Task Cascade (HTC) on COCO and LVIS dataset validation
set. The two models use the same backbone ResNeXt-101-
64x4d. They are trained with 20 epochs and learning rate
decay at 16th and 19th epoch.

Model AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

mrcnn-r50 0.0 13.3 21.4 27.0 18.0
rhead-only 8.5 20.8 17.6 19.3 18.4
rhead-avg 8.5 20.9 19.6 24.6 20.3
rhead-det 8.6 22.0 16.7 25.2 19.8
rhead-cat 8.6 22.0 19.6 26.6 21.1
rhead-cat-thr 8.5 20.8 20.1 26.7 20.9
rhead-cat-scale 8.5 21.3 19.9 26.7 21.0

Table 6: Different ways for calibrating predictions of orig-
inal classification head with newly trained head. The ways
we have tried include rhead-only (using only newly trained
head predictions), rhead-avg (averaging predictions of orig-
inal head and new head), rhead-det (using the two heads
separately for detection outputs and combining them af-
terward, i.e., two expert models), rhead-cat (simply con-
catenating tail classes predictions of new head and many-
shot classes predictions of original head, with (0,10) and
[10, 100) for new head and [100, 1000) [1000,-] for origi-
nal head), rhead-cat-thr (filtering new head predictions with
0.05 threshold and then concatenating), and rhead-cat-scale
(scaling new head predictions by ratio of average back-
ground score between new and original head predictions).

the number of classes in each bin in long-tail detection eval-
uation, rather than just averaging AP of all classes. This is
because, the number of classes in each bin may vary largely
and the bins with fewer classes tend to be down-weighted
in overall mAP. In this sense, the importance of solving the
tail problem is not obviously and directly demonstrated by
using the current evaluation metric mAP. For example, the
validation set of LVIS v0.5 contains only 67 classes with
less than 10 training instances, while the numbers are much
larger for the [10, 100) bin and [100, 1000) bin, which are
298 and 284 respectively. The improvement on (0, 10) bin
would be down-weighted in mAP.

Model AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

htc-x101 7.1 30.5 30.7 33.9 29.4
calibration 16.0 30.6 29.8 33.5 29.8

htc-x101-ms-dcn 5.6 33.0 33.7 37.0 31.9
calibration 12.7 32.1 33.6 37.0 32.1

Table 7: Results of applying our calibration to state-of-the-
art multi-stage cascaded instance segmentation model Hy-
brid Task Cascade (HTC).

Model AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

mrcnn-r50 0.0 13.3 21.4 27.0 18.0
img-sample 7.7 23.2 21.4 26.2 22.0
calibration 8.6 22.0 20.2 26.7 21.3

htc-x101 5.6 33.0 33.7 37.0 31.9
img-sample 10.3 32.4 33.4 36.6 31.9
calibration 12.7 32.1 33.6 37.0 32.1

Table 8: Comparison with image level sampling trained
model on baseline Mask R-CNN.

2.4. Comparison with Image-level Repeat Sampling

As shown in Table 8, we compare our classification
calibration approach with image-level repeat sampling for
the whole network, which is reported as the best baseline
in [5]. Although our calibration method has lower over-
all mAP on validation set than image-level repeat sampling
on tail classes, it has higher performance on the most tail
bin (0, 10). When generalized to the more complex multi-
stage model HTC, our method performs better. The perfor-
mance of our calibrated model suffers less drop on many-
shot classes and enjoys much improvement on tail-classes
than image-level repeat sampling method.

3. Final Models and Test Set Submission
As shown in Table 9, our final submitted results on the

test set are from the ensemble of 4 models with different
backbones. However, due to time limit, we only have our
best single model (31.9 AP on val) calibrated among all fi-
nal models. We believe the final ensemble results will be
stronger on tail classes if all models are calibrated.

4. External Data
Microsoft COCO dataset [7] (2017 version) and COCO-

stuff dataset [1] are used as external data for our submit-
ted results. All COCO, COCO-stuff, and LVIS datasets
share the same training images but own different annota-
tions (LVIS only uses part of the training images in COCO
train2017). We only use the training set of COCO and
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Model val-set

htc x101 64d ms dcn 31.9
htc x101 32d ms dcn 31.4
htc x101 64d ms dcn cos 30.7
htc r101 ms dcn 30.0
ensemble-with-calibration 34.2
add-multiscale-testing 35.2

Table 9: Final models performance and ensemble results on
validation set. ms denotes multi-scale training, dcn means
deformable convolution and cos means cosine learning rate
schedule.

Model AP APr APc APf

best-baseline 20.5 9.8 21.1 30.0
w/o 22.89 5.90 25.65 35.26
with-calibration 23.94 10.31 25.26 35.16
ensemble-with-calibration 26.11 11.94 27.98 37.05
add-multiscale-testing 26.67 10.59 28.70 39.21

Table 10: Comparison of baseline model without and with
our proposed calibration method on LVIS test set. Best-
baseline denotes best baseline performance reported [5];
w/o denotes our best single model (31.9 AP on validation
set); with-calibration means adds calibration to the model;
ensemble-with-calibration means using the ensemble of all
models and adding calibration; add-multiscale-testing de-
notes adding multi-scale testing.

Model P S AP(0,10) AP[10,100) AP[100,1000) AP[1000,−] AP

HTC-x50-fpn 1.4 23.9 25.3 30.4 24.0
HTC-x50-fpnX 3.9 25.0 27.0 31.2 25.3
HTC-x50-fpnXX 3.7 27.2 27.4 31.8 26.4

Table 11: Effect of external data. P stands for using COCO
box and polygons for pre-training, and S for using COCO-
stuff pixel-level semantic segmentation label for semantic
head of HTC.

COCO-stuff, which contains 118K images. COCO covers
80 thing classes, the same as COCO-stuff, but the latter also
contains 91 stuff classes. For COCO, instance-level boxes
and polygons are used to pre-train HTC models. We ini-
tialize our model with a model pre-trained on COCO. For
COCO-stuff, pixel-level semantic segmentation labels are
used for training the semantic head of HTC. Table 11 shows
the results of using COCO pre-training and semantic head.

5. Conclusion
We propose a classification calibration method for im-

proving the performance of current state-of-the-art proposal
based object instance detection and segmentation models
over long-tail distribution data. It is able to effectively im-
prove the classification performance over the long-tail dis-
tribution data by enhancing the proposal classification ac-
curacy. Currently, our retraining strategy for proposal clas-
sification head is not optimized, which we will investigate
in future works. For example, we may combine our method
with image-level sampling, choose new head designs or use
new head training sampling methods, trying to further boost
the model performance on long-tail data distribution.
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